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ABSTRACT
Sequential recommendation methods play an irreplaceable role
in recommender systems which can capture the users’ dynamic
preferences from the behavior sequences. Despite their success,
these works usually suffer from the sparsity problem commonly
existed in real applications. Cross-domain sequential recommenda-
tion aims to alleviate this problem by introducing relatively richer
source-domain data. However, most existing methods capture the
users’ preferences independently of each domain, which may ne-
glect the item transition patterns across sequences from different
domains, i.e., a user’s interaction in one domain may influence
his/her next interaction in other domains. Moreover, the data spar-
sity problem still exists since some items in the target and source
domains are interacted with only a limited number of times. To
address these issues, in this paper we propose a generic framework
named multi-view graph contrastive learning (MGCL). Specifically,
we adopt the contrastive mechanism in an intra-domain item rep-
resentation view and an inter-domain user preference view. The
former is to jointly learn the dynamic sequential information in
the user sequence graph and the static collaborative information
in the cross-domain global graph, while the latter is to capture
the complementary information of the user’s preferences from dif-
ferent domains. Extensive empirical studies on three real-world
datasets demonstrate that our MGCL significantly outperforms the
state-of-the-art methods.
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1 INTRODUCTION
Sequential recommendation aims to predict the next item that a
user is most likely to interact with based on his/her historical be-
havior sequences, by capturing the user’s dynamic preferences and
extracting the item transition patterns across sequences. Existing
sequential recommendation methods often employ recurrent neu-
ral networks (RNNs) and attention mechanisms to model users’
sequential information [10, 11, 13, 28], which have achieved an
impressive progress. However, most of the works only focus on
users’ behavior sequences in a single domain, and suffers from the
common cold-start and data sparsity problems in recommender
systems.

Cross-domain recommendation has been proposed to alleviate
the data sparsity problem in the target domain by introducing some
relatively richer source-domain data [40]. Some recent works have
been devoted to knowledge transfer between a source domain and
a target domain [12, 22, 36]. However, existing methods do not
take into account the sequential information of users’ behaviors in
different domains, and thus may not model the users’ dynamic pref-
erences or the sequential dependencies across behavior sequences
well.

To address the above issues, in this paper we study a new and
emerging problem, i.e., cross-domain sequential recommendation
(CDSR). Scenarios of CDSR are commonly existed in real-world
applications. Fig. 1 illustrates the interaction sequences of a user in
a book domain and a movie domain. From the top half of Fig. 1, we
can see that the user has recently read several "Sherlock Holmes"
novels, and according to the idea of sequential recommendation,
we will recommend the next "Sherlock Holmes" novel for him/her.
From the bottom half of Fig. 1, we find that the user has recently
tended to watch suspense movies, but there is no strong connection
between these movies, so we can only randomly recommend a
suspense movie for him/her. However, if we consider the user’s
interaction sequences in both domains, we will find that the user
has recently watched the "Sherlock Holmes" movie in the movie
domain and has also read several "Sherlock Holmes" novels in the
book domain, therefore it would be a better choice to recommend
the next "Sherlock Holmes" movie to him.
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Figure 1: An example of a user’s behavior sequences in a book
domain (the top half) and a movie domain (the bottom half).

𝜋-Net [21] is one of the earliest works for the CDSR task. It
adopts RNNs to capture the sequential information and devises
a cross-domain transfer unit to extract and share the user infor-
mation between two domains at each timestamp. CD-SASRec [1]
is an improved version of SASRec [13] which employs attention
mechanisms in the CDSR task. DA-GCN [6] uses graph neural net-
works (GNNs) to model the complicated interaction relationships,
which constructs a domain-aware graph to link different domains.
RecGURU [15] unifies user embeddings from different domains via
an adversarial learning approach and generates a generalized user
representation.

Despite the progress of these studies, most existing CDSR meth-
ods focus on learning the user preferences of different domains
separately and then performing knowledge transfer between these
domains, while capturing preferences is usually independent of
each domain. This neglects the item transition patterns across se-
quences from different domains. In real-world applications, the
next item that a user may interact with in the target domain is
likely to be related to the item he/she recently interacted with in
a related source domain, and if we can further explore the joint
sequential information across sequences from different domains,
the recommendation performance will be improved.

Moreover, the data sparsity problem still exists in the CDSR task
since some items in the target and source domains are interacted
with only a limited number of times. Self-supervised learning de-
rives the supervised signals from the data itself, which demonstrates
its ability to address the data sparsity problem [19]. Contrastive
learning is one of the important techniques in self-supervised learn-
ing, which can learn discriminative embeddings without explicit
extra labels bymaximizing themutual information between positive
pairs [32]. Contrastive learning has received increasing attention
in sequential recommendation [20, 33, 35, 37]. However, most ex-
isting methods only consider a single sequence of a user’s own,
and cannot adequately extract the self-supervised signals when the
interaction data is not sufficient.

In the CDSR task, there are item transition patterns across se-
quences, and the skewness of the length distribution has to be
considered as well. Moreover, there are correlations of a user’s
preferences in the target and source domains, and the item char-
acteristics of different domains may be not consistent, so how to
perform knowledge transfer between domains is another issue to
be concerned. It is thus challenging to design a generic contrastive
learning framework for CDSR task.

To address the above issues, we treat the studied problem from
the perspective of the intra-domain item representation view and
the inter-domain user preference view. Specifically, we construct
a target-domain sequence graph and a source-domain sequence
graph for each user based on his/her historical sequences, with the
purpose of capturing the sequential information in each domain.
Moreover, we construct a cross-domain global graph by aggregat-
ing all users’ behaviors in both the target and source domains,
which aims to capture the static collaborative information across
users’ sequences in multiple domains. From the intra-domain item
representation view, we apply the contrastive mechanism to the
corresponding item embedding of user behavior sequences in the
user sequence graph and the cross-domain global graph, so that
the graph encoders can learn the complementary information, and
extract the self-supervised signals to alleviate the data sparsity prob-
lem. Then, we aggregate the item embeddings learned from the
two graphs and adopt the sequence encoder to capture the user’s
sequential preferences in both domains. From the inter-domain user
preference view, considering that there are also transition patterns
across sequences from different domains, and the user preferences
in different domains may be similar in a period of time. Therefore,
we apply the contrastive mechanism to the target-domain sequen-
tial preferences and the source-domain sequential preferences, so
that the knowledge can be transferred across domains, enabling
a user’s preferences from different domains to complement each
other and exact the self-supervised signals.

We summarize our main contributions as follows:

• We propose a generic contrastive learning framework named
multi-view graph contrastive learning (MGCL) for cross-domain
sequential recommendation, which tackles the problem from the
perspective of an intra-domain item representation view and an
inter-domain user preference view.

• We construct some user sequence graphs and a cross-domain
global graph to learn complicated item representations, and adopt
the contrastive mechanism to capture dynamic sequential infor-
mation, static collaborative information and transition patterns
across different domains.

• We conduct extensive empirical studies on three real-world
datasets, where the results show that our MGCL significantly out-
performs the state-of-the-art baselines. We also conduct ablation
studies to demonstrate the effectiveness of each key component.

2 RELATEDWORK
In this section, we briefly describe the related works from the fol-
lowing categories: (i) cross-domain general recommendation, (ii)
sequential recommendation, and (iii) cross-domain sequential rec-
ommendation.

2.1 Cross-Domain General Recommendation
Cross-domain recommendation aims to alleviate the data spar-
sity issue in a target domain by transferring knowledge from a
source domain. The most important concern of cross-domain rec-
ommendation is determining what knowledge to transfer between
domains and how to transfer the knowledge. EMCDR [22] is a clas-
sic mapping-based method which transfers the overlapped users’
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preferences between different domains by learning a mapping func-
tion. DDTCDR [16] introduces a latent orthogonal mapping to
capture user preferences over multiple domains while preserving
relations between users across different latent spaces. CMF [27]
is another classic approach based on multi-domain collaborative
training, which factorizes matrices from multiple domains and
share the users’ latent factors. CoNet [12] develops a collaborative
cross-network to allow dual knowledge transfer across different
domains. CCDR [36] performs contrastive learning on user and
item attributes between different domains to enable more diverse
knowledge transfer. However, these methods are not suitable for
sequential recommendation since they all ignore the order in users’
behaviors.

2.2 Sequential Recommendation
Sequential recommendation is proposed to capture the sequential
patterns among users’ historical interactions. RNNs are widely
adopted in single-domain sequential recommendation [10, 11] due
to their natural instincts to model a sequential data step-by-step.
Caser [30] proposes a CNN-based method which adopts both hor-
izontal and vertical convolutional filters to learn the sequential
patterns. Another representative technique in sequential recom-
mendation is the attention mechanism [9, 13, 28]. For example, SAS-
Rec [13] uses a stacked structure of self-attention blocks to model
users’ behavior sequences, which can capture the long-range de-
pendencies across sequences. Recently, GNNs have attracted much
attention [34, 38] for their ability to capture higher-order relation-
ships among items. SRGNN [34] employs gated GNN in session
graphs to capture complex item transitions. There are also some
works that adopt contrastive mechanisms to alleviate the data spar-
sity issue [20, 33, 35, 37]. CL4SRec [37] and CoSeRec [20] propose
some data augmentation approaches to construct contrastive tasks.
MCLSR [33] employs interest-level and feature-level contrastive
mechanisms to learn the co-action information between users and
items. Although these studies have made great progress, none of
them has considered knowledge transfer under cross-domain situa-
tions.

2.3 Cross-Domain Sequential Recommendation
𝜋-Net [21] is one of the earliest works for CDSR in a shared-account
scenario. Specifically, it employs GRUs to capture the sequential
information in each domain, and transfer knowledge between dif-
ferent domains by a cross-domain transfer unit. PSJNet [29] is an
improved method based on 𝜋-Net, which proposes a split-and-join
framework to learn the cross-domain representations of users. CD-
SASRec [1] extends SASRec [13] to the cross-domain setting, which
fuses the source-domain aggregated vector into the target-domain
item embedding. DA-GCN [6] is a GNN-based model in CDSR,
which constructs a domain-aware graph to model the multiple asso-
ciations among items from different domains. There are also some
hybrid models that combine different techniques to enhance the
capability in capturing the item dependencies among sequences
and the complex associations between domains. RecGURU [15]
proposes an adversarial learning method to unify user representa-
tions from different domains into a generalized user representation.
SEMI [14] employs contrastive learning to pre-train encoders for

modeling users’ behavior sequences from a multimodality view.
DDGHM [39] proposes a dual dynamic graphical model with hybrid
metric training to exploit the evolving patterns of users’ behav-
iors and enhance representation learning to address the sparsity
problem. C2DSR [3] adopts a graphical and attentional encoder to
capture the item relationships, and devises two sequential objec-
tives with a contrastive objective to jointly learn the single-domain
and cross-domain user representations.

Although these methods have made great progress, there is still
a data sparsity problem because some items in the target and source
domains are interacted with only a few times. Besides, most existing
methods ignore the correlations between sequences from different
domains. To address these problems, we construct a cross-domain
global graph based on the interactions of all users in both domains,
which aims to capture the static collaborative information among
all sequences. Moreover, we apply the contrastive mechanism to
the corresponding item embeddings and learn the self-supervised
signals to further alleviate the sparsity problem. We also apply
the contrastive mechanism to users’ preferences from different do-
mains, which extracts the complementary information and enables
knowledge transfer across domains.

3 PROPOSED METHOD
In this section, we formally define the CDSR task and introduce the
components of our proposed MGCL in detail.

3.1 Problem Definition
For cross-domain sequential recommendation, we have a set of
users U, and denote the set of items in the target domain as I𝑋 .
Moreover, we have a source domain with same users and a different
item set I𝑌 . We define the target-domain behavior sequence of
each user 𝑢 ∈ U asX = {𝑥1, 𝑥2, . . . , 𝑥𝐿} (ordered by the interaction
time), which consists of 𝐿 items from I𝑋 . If the sequence length
is shorter than 𝐿, a padding item will be repeatedly appended at
the beginning of the sequence. Moreover, X𝑡 = {𝑥1, 𝑥2, . . . , 𝑥𝑡 },
1 ⩽ 𝑡 ⩽ 𝐿 denotes a truncated behavior sequence at time step 𝑡

with regard to sequence X. Similarly, we denote a truncated item
sequence Y𝑡 ′ = {𝑦1, 𝑦2, . . . , 𝑦𝑡 ′ } for the source domain, where 𝑡 ′ is
the most recent time step at which the same user interacted with an
item in the source domain before the real moment corresponding
to the time step 𝑡 in the target domain. This is to ensure causality
of the user behaviors from the source domain to the target domain.
The goal of CDSR is to predict the next possible preferred item in
the target domain (i.e., 𝑥𝑡+1) according to X𝑡 and Y𝑡 ′ . In the lower
left part of Fig. 2 are the hybrid input sequences of the target and
source domains ordered by the interaction time.

3.2 An Overview of MGCL
The overall framework of our proposed MGCL is illustrated in
Fig. 2. We treat the studied problem from the perspective of an
intra-domain item representation view and an inter-domain user
preference view.

From the intra-domain item representation view (the top part
of Fig. 2), we first construct a target-domain sequence graph and a
source-domain sequence graph for each user according to his/her
behavior sequences. Moreover, we construct a cross-domain global
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graph by aggregating all users’ interactions in both domains. Then
we adopt the corresponding graph encoder on each graph to achieve
message propagation and generate the item embeddings. After that,
we apply a nonlinear projection on the output of each graph encoder
layer. To make the sequential information and the collaborative
information complement each other, we further adopt intra-domain
graph contrastive learning on the projected item representations.

From the inter-domain user preference view (the bottom part
of Fig. 2), we aggregate the item representations and adopt a se-
quence encoder to capture the user’s sequential preferences in
both domains. Then we employ a mapping unit to transfer the
source-domain knowledge to the target domain. To learn the com-
plementary information of the user’s preferences from different
domains, we apply inter-domain preference contrastive learning
on the target-domain sequential preference and the mapped source-
domain sequential preference. Finally, we concatenate the prefer-
ences and predict the next possible preferred item for the user.

3.3 Intra-Domain Item Representation View
Graph neural networks (GNNs) are effective in capturing structured
information and higher-order item transitions. However, most exist-
ing sequential recommendation methods only focus on a single se-
quence of each user in a single domain. Such approaches ignore the
correlations between sequences from different domains. To tackle
this problem, we construct a cross-domain global graph based on
the interactions of all users in both domains, which aims to capture
the static collaborative information among all sequences. Moreover,
we apply some contrastive mechanism to the corresponding item
embeddings and learn the self-supervised signals to alleviate the
data sparsity problem.

3.3.1 User sequence graph embedding learning. In this part, we sep-
arate the target-domain and source-domain sequences into graph-
structured data and employ a user sequence graph encoder to gen-
erate the item embeddings and capture complex item transitions.

Target-domain sequence graph. Taking the target domain
as an example, a user’s sequence X𝑡 in the target domain can be
modeled as a directed graph. In the sequence graph, each node
represents an item 𝑥𝑖 ∈ X𝑡 and each edge (𝑥𝑖−1, 𝑥𝑖 ) denotes that
a user clicks 𝑥𝑖 after 𝑥𝑖−1 in the sequence X𝑡 . We denote 𝑿 =

{𝒙1, 𝒙2, . . . , 𝒙𝑡 } as the embeddings of the target-domain sequence
X𝑡 , where 𝒙𝑖 ∈ R𝑑 is a 𝑑-dimensional learnable vector.

User sequence graph encoder layer. Then, we present how
to achieve message propagation and update the item embeddings
in target-domain sequence graph. For graphs with different struc-
tures, we should adopt suitable graph encoders in order to fully
extract the connections between the nodes and capture the struc-
tural information. Inspired by SRGNN [34], we employ gated GNNs
as the user sequence graph encoder, which uses GRUs to model
the sequential data step-by-step and control the flow of infor-
mation between nodes, enabling the model to selectively aggre-
gate and update node embedding. After encoding, the item em-
beddings in the target-domain sequence graph can be denoted as
𝑯 𝑺,𝑿 = {𝒉𝑆,𝑋1 ,𝒉𝑆,𝑋2 , . . . ,𝒉𝑆,𝑋𝑡 }.

Similarly, we can construct a source-domain sequence graph,
and obtain the source-domain item embeddings in the sequence
graph 𝑯 𝑺,𝒀 = {𝒉𝑆,𝑌1 ,𝒉𝑆,𝑌2 , . . . ,𝒉𝑆,𝑌

𝑡 ′ } after a graph encoder layer.

3.3.2 Global graph embedding learning. In this part, we aggregate
all user sequences in a cross-domain global graph, and employ a
global graph encoder to update the item embeddings and capture
the collaborative information.

Cross-domain global graph. The cross-domain global graph
is a undirected bipartite graph where a user node represents the
corresponding user 𝑢𝑖 in the user set U. Based on the users’ in-
teraction sequences in the target and source domains, each user
node is linked to the item nodes that he/she has interacted with.
In such graph construction, different user sequences can be asso-
ciated through the item nodes, and the item nodes from different
domains can also be associated through the user nodes, so that
the knowledge can be transferred across different sequences and
domains

Global graph encoder layer. To fully extract the collaborative
information in the cross-domain global graph, we adopt graph con-
volutional networks (GCNs) as the global graph encoder. Similar to
LightGCN [7], an efficient model in non-sequential recommenda-
tion, we aggregates the features of neighboring nodes and obtain
new representation for each node. And the propagation mechanism
of GCNs enables knowledge transfer between items across different
domains, effectively leveraging the rich source-domain information
to alleviate the data sparsity problem in the target domain. The
message propagation strategy can be formalized as:

𝑬 (𝑘+1) = (𝑫
1
2𝑨𝑫− 1

2 )𝑬 (𝑘 ) , (1)

where 𝑨 denotes the adjacency matrix of the cross-domain global
graph and 𝑫𝑖𝑖 =

∑
𝑗=0𝑨𝑖 𝑗 is the corresponding diagonal degree

matrix. Notice that 𝑘 is the depth of the graph encoder layers, and
𝑬 (0) represents the embedding matrix of all nodes.

Then for a given user 𝑢 with his/her corresponding behavior
sequences in the target domain and source domain (i.e., X𝑡 and
Y𝑡 ′ ), we can obtain the corresponding item embeddings 𝑯𝑮,𝑿 =

{𝒉𝐺,𝑋
1 ,𝒉𝐺,𝑋

2 , . . . ,𝒉𝐺,𝑋
𝑡 } and 𝑯𝑮,𝒀 = {𝒉𝐺,𝑌

1 ,𝒉𝐺,𝑌
2 , . . . ,𝒉𝐺,𝑌

𝑡 ′ } by se-
lecting from the learned embedding matrix 𝑬 (𝑘 ) according to the
item indices.

3.3.3 Intra-domain graph contrastive learning. The user sequence
graph contains the dynamic sequential information of one single
user behavior sequence, while the cross-domain global graph con-
tains the static collaborative information across sequences and
domains. To jointly learn the complementary information from
different graphs, we apply the contrastive mechanism to the corre-
sponding item embeddings of the user behavior sequences in the
user sequential graph and the cross-domain global graph.

Projection.We apply a nonlinear projection on the output of
each graph encoder layer, which is shown to be effective in Sim-
CLR [4]. The auxiliary projection module maps the item representa-
tions to the space where a contrastive loss is applied, which makes
contrastive learning more flexible and powerful. Notice that for the
later recommendation task we use the item representation before
linear projection since the introduction of contrastive learning may
lead to information loss.

Taking the target domain as an example, we feed each target-
domain item representation 𝒉𝑆,𝑋

𝑖
∈ 𝑯𝑆,𝑋 and 𝒉𝐺,𝑋

𝑖
∈ 𝑯𝐺,𝑋 into a
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𝑢1：𝑥1→𝑦1→𝑦2→𝑥2→𝑦3→𝑥3 →𝑦4 →𝑥4

𝑢2：𝑥2→𝑥3→𝑦1→𝑦5→𝑦4→𝑥4 →𝑦3 →𝑥5

𝑢3：𝑦2→𝑦3→𝑥2→𝑥4→𝑥5→𝑦4 →𝑦5 →𝑥3

…

𝑢1 𝑢2 𝑢3 …

…

…

User Sequence 
Graph Encoder 

User Sequence 
Graph Encoder

Global Graph 
Encoder Layer
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Intra-Domain Graph 
Contrastive Learning

Intra-Domain Graph 
Contrastive Learning
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Seq Enc Seq Enc

Mapping 
Unit

Inter-Domain Preference 
Contrastive Learning
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Input Sequences
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Sequential Preference

𝑥2

𝑥1

𝑥4

𝑥3

𝑦2

𝑦1

𝑦4

𝑦3

𝑦3 𝑦4 𝑦5

𝑥3 𝑥4 𝑥5

Predict

Projection

Projection

Agg

for 𝑢1

for 𝑢1

Inter-Domain 
User Preference View

Intra-Domain 
Item Representation View

User Sequence 
Graph Embedding Learning

User Sequence 
Graph Embedding Learning

Global Graph 
Embedding Learning

𝑥1 𝑥2

𝑦2𝑦1

Figure 2: The framework of our proposed multi-view graph contrastive learning (MGCL).

multi-layer perceptron (MLP):

𝒉𝑆𝑃,𝑋
𝑖

= 𝒉𝑆,𝑋
𝑖

𝑾𝑆𝑃,𝑋 + 𝒃𝑆𝑃,𝑋 , (2)

𝒉𝐺𝑃,𝑋
𝑖

= 𝒉𝐺,𝑋
𝑖

𝑾𝐺𝑃,𝑋 + 𝒃𝐺𝑃,𝑋 , (3)

where 𝒉𝑆𝑃,𝑋
𝑖

,𝒉𝐺𝑃,𝑋
𝑖

∈ R𝑑 denote the projected item representa-
tions, and𝑾𝑆𝑃,𝑋 ,𝑾𝐺𝑃,𝑋 ∈ R𝑑×𝑑 , 𝒃𝑆𝑃,𝑋 , 𝒃𝐺𝑃,𝑋 ∈ R𝑑 are learnable
parameters. Likewise, we can get 𝒉𝑆𝑃,𝑌

𝑖
and 𝒉𝐺𝑃,𝑌

𝑖
in a similar way.

Item representation contrastive learning. Following [2, 33],
we regard the graph embedding learned from the sequence graph
and the global graph as different aspects of item representations, and
adopt some contrastive mechanism to extract the self-supervised
signal from different aspects. The learning objective of contrastive
learning is to maximize the mutual information between some pos-
itive pairs while minimizing the agreement between some negative
samples. Specifically, we treat the representations for a same item
from different graphs (i.e., 𝒉𝑆𝑃,𝑋

𝑖
and 𝒉𝐺𝑃,𝑋

𝑖
) as a pair of positive

samples. Moreover, we naturally treat the item representations of
different users (i.e., 𝒉𝑆𝑃,𝑋

𝑖
and �̃�𝑆𝑃,𝑋𝑖 ) as a pair of negative samples.

Then, we adopt InfoNCE [24, 35] with a standard binary cross-
entropy loss between samples as our learning objective. The loss
function can be formalized as follows:
L𝑡 = −

∑︁
𝑖=1

log𝜎 (𝑠𝑖𝑚(𝒉𝑆𝑃,𝑋
𝑖

,𝒉𝐺𝑃,𝑋
𝑖

))+log𝜎 (1−𝑠𝑖𝑚(�̃�𝑆𝑃,𝑋𝑖 ,𝒉𝐺𝑃,𝑋
𝑖

)),

(4)
where 𝜎 (·) is the sigmoid function and 𝑠𝑖𝑚(·) is a dot product to
measure the similarity between two item representations.

Similarly, we can calculate the item representation contrastive
loss in the source domain as follows:

L𝑠 = −
∑︁
𝑖=1

log𝜎 (𝑠𝑖𝑚(𝒉𝑆𝑃,𝑌
𝑖

,𝒉𝐺𝑃,𝑌
𝑖

))+log𝜎 (1−𝑠𝑖𝑚(�̃�𝑆𝑃,𝑌𝑖 ,𝒉𝐺𝑃,𝑌
𝑖

)).

(5)

3.4 Inter-Domain User Preference View
After obtaining the item representation, a typical method is to
adopt a sequence encoder to capture a user’s sequential preferences,
i.e., to explore the user’s current interest and transition patterns
from his/her behavior sequence. However, most of the existing
methods focus only on a user’s sequence in a single domain, and
the recommendation performance may be unsatisfactory when the
data in the target domain is highly sparse.

Besides, a user’s interaction in one domain may influence his/her
next interaction in other domains, which means that there are also
item transition patterns across sequences from different domains.
Therefore, we aim to consider the user preferences in both the
target and source domains, and achieve knowledge transfer across
domains. Moreover, we apply the contrastive mechanism to the
target-domain sequential preference and the source-domain sequen-
tial preference to learn the complementary information and derive
some self-supervised signals.
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3.4.1 Sequential preference learning. In this part, we first aggregate
the graph embedding learned via a user sequence graph and a cross-
domain global graph. Thenwe employ sequence encoders to capture
the user sequential preferences in the target and source domains.

Graph embedding aggregation. As discussed in Section 3.3,
the item embeddings in the user sequence graph contain the se-
quential information while those in the cross-domain global graph
contain the collaborative information. To obtain more suitable item
representations, we adaptively aggregate these two by a weighted
sum. Specifically, we concatenate the representations of a same item
from different graphs, feed it into an MLP and use an activation
function to obtain the corresponding weights:

𝑔𝑋𝑖 = 𝜎 ( [𝒉𝑆,𝑋
𝑖

,𝒉𝐺,𝑋
𝑖

]𝑾𝑋
𝑔 + 𝒃𝑋𝑔 ), (6)

where [·] denotes the concatenation operation,𝑾𝑋
𝑔 ∈ R2𝑑×1 and

𝒃𝑋𝑔 ∈ R are learnable parameters. We use the sigmoid function 𝜎 (·)
as the activation function, so that 𝑔𝑋

𝑖
is restricted to (0, 1).

The final representation of the item can be calculated by a
weighted sum of 𝒉𝑆,𝑋

𝑖
and 𝒉𝐺,𝑋

𝑖
as follows:

𝒉𝐴,𝑋
𝑖

= 𝑔𝑋𝑖 × 𝒉𝑆,𝑋
𝑖

+ (1 − 𝑔𝑋𝑖 ) × 𝒉𝐺,𝑋
𝑖

. (7)

Similarly, we can obtain the aggregated item representations
𝑯𝑨,𝒀 = {𝒉𝐴,𝑌1 ,𝒉𝐴,𝑌2 , . . . ,𝒉𝐴,𝑌

𝑡 ′ } from the source domain.
Sequence encoder.Next, we adopt a sequence encoder to model

the aggregated item embeddings in order to capture the user’s
dynamic preferences and sequential dependencies among items.
Sequence encoders have been extensively studied in various previ-
ous works in sequential recommendation with significant progress,
and we do not focus on their design in our work. We utilize the
architecture of SASRec [13] model in this paper, which applies a
unidirectional Transformer encoder [31] and has been shown as an
effective and efficient model in sequential recommendation.

The sequential preferences of the user at the 𝑡-th time step in
the target domain 𝒇𝑋𝑡 ∈ R𝑑 and in the source domain 𝒇𝑌𝑡 ∈ R𝑑 can
be formalized as:

𝒇𝑋𝑡 = 𝑆𝑒𝑞𝐸𝑛𝑐 ({𝒉𝐴,𝑋1 ,𝒉𝐴,𝑋2 , . . . ,𝒉𝐴,𝑋𝑡 }), (8)

𝒇𝑌𝑡 = 𝑆𝑒𝑞𝐸𝑛𝑐 ({𝒉𝐴,𝑌1 ,𝒉𝐴,𝑌2 , . . . ,𝒉𝐴,𝑌
𝑡 ′ }) . (9)

3.4.2 Inter-domain preference contrastive learning. Considering
that a same user’s preferences in different domains may be similar
in a period of time, e.g., in Fig. 1, the user prefers to read suspense
novels in the book domain and watch suspense movies in the movie
domain, so the items of the suspense category are more likely to
attract his attention. Even though the types of items are different,
they reflect the same user preference. Therefore, we apply the
contrastive mechanism to the target-domain sequential preference
and the source-domain sequential preference.

Mapping unit. Since the item characteristics of different do-
mains may be not consistent, to achieve knowledge transfer from
the source domain to the target domain, we employ a mapping
unit to reconstruct the user’s sequential preference in the source
domain. Specifically, we feed the source-domain user’s preference
𝒇𝑌𝑡 into an MLP:

𝒇𝑀,𝑌
𝑡 = 𝒇𝑌𝑡 𝑾

𝑀,𝑌 + 𝒃𝑀,𝑌 , (10)

where𝑾𝑀,𝑌 ∈ R𝑑×𝑑 and 𝒃𝑀,𝑌 ∈ R𝑑 are learnable parameters.

Preference contrastive learning. To enable a user’s prefer-
ences from different domains complement each other and learn
the self-supervised signals, we maximize the mutual information
between them. Specifically, we treat the sequential preferences of
a same user in different domains (i.e., 𝒇𝑋𝑡 and 𝒇𝑀,𝑌

𝑡 ) as a pair of
positive samples while the sequential preferences of two different
users (i.e., 𝒇𝑋𝑡 and 𝒇

𝑋

𝑡 ) as a pair of negative samples. Then, the
preference contrastive loss function can be formalized as:

L𝑝 = − log𝜎 (𝑠𝑖𝑚(𝒇𝑋𝑡 ,𝒇
𝑀,𝑌
𝑡 )) + log𝜎 (1 − 𝑠𝑖𝑚(𝒇𝑿𝒕 ,𝒇

𝑋

𝑡 )) . (11)

3.5 Prediction Layer
In the prediction layer, we employ concatenation to aggregate the
sequential preferences from the target and source domains in order
to adequately utilize the information of different domains.

𝒇 =

[
𝒇𝑋𝑡 ,𝒇

𝑀,𝑌
𝑡

]
, (12)

where 𝒇 ∈ R2𝑑 denotes the concatenation of the sequential prefer-
ences. Then, the concatenation vector is fed into an MLP to obtain
the final representation of the user’s preferences:

𝒇 𝑡 = 𝒇𝑾 (𝑓 ) + 𝒃 (𝑓 ) , (13)

where𝑾 (𝑓 ) ∈ R2𝑑×𝑑 and 𝒃 (𝑓 ) ∈ R𝑑 are learnable parameters, and
𝒇 𝑡 ∈ R𝑑 denotes the final representation of the user’s preferences.
Finally, the prediction score of item 𝑖 can be calculated as follows:

𝑟𝑡,𝑖 = 𝒇 𝑡 (𝒙𝑖 )𝑇 . (14)

We adopt the binary cross-entropy loss function as the recom-
mendation loss for our MGCL:

L𝑟 = −
∑︁
𝑢∈U

𝐿−1∑︁
𝑡=1

𝛿 (𝑥𝑡+1) [log(𝜎 (𝑟𝑡,𝑥𝑡+1 )) + log(1 − 𝜎 (𝑟𝑡, 𝑗 ))], (15)

where 𝑗 ∈ I𝑋 \X𝑢 is a sampled negative item and 𝜎 (·) is the sig-
moid function. The indicator function 𝛿 (𝑥𝑡+1) = 1 only if 𝑥𝑡+1 is
not a padding item, and 0 otherwise.

Finally, we combine the recommendation loss and the three
contrastive losses as follows:

L = L𝑟 + 𝛼L𝑡 + 𝛽L𝑠 + 𝛾L𝑝 , (16)

where 𝛼 , 𝛽 , 𝛾 are the hyper-parameters to control the intensity of
the self-supervised tasks.

4 EXPERIMENTS
In this section, we introduce the experimental settings and conduct
extensive empirical studies to answer the following five research
questions:
(RQ1) How does our MGCL perform compared with the state-of-

the-art methods?
(RQ2) Does our MGCL alleviate the data sparsity issue?
(RQ3) What’s the influence of various components in our MGCL?
(RQ4) How do the weights of different contrastive losses affect the

performance of our MGCL?
(RQ5) Does our MGCL really learn better item representation with

the help of contrastive learning compared with other state-
of-the-art baselines?
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Table 1: Statistical details of the datasets.

Dataset # Overlapped-Users # Items # Interactions Avg. Length Density
Movie

10929
60902 462314 42.30 0.07%

CD 94171 348746 31.91 0.03%
Book 242363 615912 56.36 0.02%

4.1 Datasets
We follow [1, 39] and conduct experiments on Amazon1, which is
a review data collected by [23] from the eponymous e-commerce
platform. The Amazon data contains overlapped users in multiple
domains, which make it suitable for the study of CDSR compared
with other datasets commonly used in the community of recom-
mender systems. We choose three datasets with different categories,
i.e., “Movie”, “CD” and “Book” from the Amazon data. According
to the setting in [13, 17], we preprocess the datasets as follows: 1)
We suppose that the presence of review, check-in and purchase
behaviors are positive feedback (i.e., a user interacted with an item)
and use the timestamps to determine the order of the interactions.
2) We only keep the users and items with no fewer than five related
interactions. And we discard later duplicated (user, item) pairs. 3)
We only keep the sequence of a user who has interactions in all
the three domains. 4) We adopt the leave-one-out evaluation by
splitting each sequence into three parts, i.e., the last interaction for
test, the penultimate interaction for validation and the remaining
interactions for training. Table 1 shows the statistical details of the
processed datasets.

4.2 Evaluation Metrics
To evaluate the recommendation performance of all models, we
adopt two common ranking-based metrics, i.e., HR@10 (hit ratio)
and NDCG@10 (normalized discounted cumulative gain), where the
former corresponds to recall because there is exactly one preferred
item for each user in the test data in our case. In particular, HR@10
refers to the proportion of the ground-truth items appearing in the
top-10 recommended lists, while NDCG@10 is sensitive to the exact
ranking positions of the items in the lists. Following the common
strategy in [8, 13], we sample 100 negative items as candidates to
avoid heavy computation on all the (user, item) pairs. These 100
negative items have not been interacted with by the corresponding
users and are sampled according to their popularity to ensure that
they are informative and representative [17].

4.3 Baselines
To verify the effectiveness of our MGCL, we compare it with thir-
teen competitive baselines, including one general recommenda-
tion method (i.e., BPRMF), one cross-domain recommendation
method (i.e., CoNet), eight sequential recommendation methods
(i.e., FPMC, GRU4Rec, GRU4Rec+, Caser, GCSAN, SASRec, CL4SRec
and CoSeRec) and three cross-domain sequential recommendation
methods (i.e., 𝜋-net, DA-GCN and CD-SASRec).
• BPRMF [25]. A traditional model which optimizes a matrix fac-
torization task using a pairwise ranking loss.

1http://jmcauley.ucsd.edu/data/amazon/

• CoNet [12]. A neural transfer learning model which enables
dual information transfer across domains by developing cross-
connection units on MLPs.

• FPMC [26]. A classic method that combines matrix factorization
and Markov chains to model the sequential pattern.

• GRU4Rec [11]. An RNN-based method which explores the item
dependencies over the sequences by adopting GRUs.

• GRU4Rec+ [10]. An improved model based on GRU4Rec [11]
which adopts a new loss function and an additional sampling
strategy.

• Caser [30]. A CNN-based model which employs horizontal and
vertical convolutional filters to model the sequences.

• GCSAN [38]. A GNN-based model which constructs directed
graphs for the sequences and applies gated GNNs to obtain all
node vectors involved in the session graphs.

• SASRec [13]. An attention based model that employs the atten-
tionmechanism to capture the dynamic preferences. It also works
as the sequence encoder in our MGCL.

• CL4SRec [37]. A self-supervised model which adopts three dif-
ferent data augmentation approaches to construct contrastive
learning tasks.

• CoSeRec [20]. An improved model based on CL4SRec [37] which
introduces two new informative augmentation operators lever-
aging item correlations to generate contrastive views.

• SASRec-M. To investigate the case where the available data are
the same as the cross-domain scenario, we merge the source and
target-domain sequences according to the timestamp, and learn
a monolithic model based on SASRec [13].

• 𝜋-Net [21]. An RNN-based model which devises a cross-domain
transfer unit to extract and share the user information across
different domains at each timestamp.

• DA-GCN [6]. A GNN-based model which employs graph convolu-
tion networks to learn the complicated interaction relationships
and the structural information in a cross-domain sequence graph.

• CD-SASRec [1]. An improved method based on SASRec [13]
which fuses the source-domain aggregated vector into the target-
domain item embedding to transfer information across domains.

4.4 Implementation Details
We implement GRU4Rec2, Caser3, SASRec4, CoSeRec5 and 𝜋-net 6
following the released codes by the authors. For the general setting,
the latent dimensionality 𝑑 is selected from {10, 20, 30, 40, 50} and
is finally configured as 𝑑 = 50 since we find that these methods
usually benefit from a larger value of 𝑑 on such sparse datasets
[13, 30]. The mini-batch size is set to 128, the dropout rate is set
to 0.5 and the maximum length of a sequence 𝐿 is set to 100. For
our MGCL, we adopt the Adam optimizer with a learning rate
of 0.001. The weights of the contrastive losses {𝛼, 𝛽,𝛾} are set to
{0.5, 0.5, 0.5}. For GRU4Rec+, the negative sampling number is set
to 2048. For Caser, the vertical and horizontal filter numbers are
set to 4 and 16, respectively. For the methods with Transformer
architectures (i.e., SASRec, CD-SASRec and our MGCL), we adopt
single-head attention layers and two attention blocks. The depth of
the GNN layer 𝑘 is set to 2 for GCSAN, DA-GCN and our MGCL. For

2https://github.com/hidasib/GRU4Rec
3https://github.com/graytowne/caser_pytorch
4https://github.com/kang205/SASRec
5https://github.com/YChen1993/CoSeRec
6https://github.com/mamuyang/PINet
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the shared-account recommendation methods (i.e., 𝜋-Net and DA-
GCN), the latent user number is set to 1. Other key parameters are
configured following the suggestions of the corresponding papers
or are tuned on the validation data.

For cross-domain recommendation methods, we only report the
performance of the best-performing model with the corresponding
source domain (i.e., when the target domain is Movie, we use CD
or Book as a source domain to assist in training, and only show the
best results). All the models are trained using Tesla V100 PCIe GPU
with 32 GB memory. The source codes of our MGCL and datasets
are available at https://csse.szu.edu.cn/staff/panwk/publications/
MGCL/.

4.5 Overall Performance Comparison (RQ1)
Table 2 illustrates the experimental results of our MGCL and base-
lines on three datasets. We mark the best result in each column in
bold and underline the second-best one.

Firstly, we can observe that our proposed MGCL outperforms
all the baselines on all the three datasets, achieving an average
improvement of 10.78% on NDCG@10 and 9.41% on HR@10 com-
pared with the strongest baseline, which indicates the superiority
of our MGCL in CDSR. Moreover, the sequential recommendation
methods outperform the non-sequential recommendation methods,
which demonstrates the importance of modeling the sequential
information from users’ behaviors. And the CDSR methods out-
perform most single-domain sequential recommendation methods,
which indicates that the introduction of cross-domain information
is often beneficial to improve the recommendation performance.
However, SASRec-M doesn’t achieve favorable performance be-
cause simply merging the two sequences may introduce more
noise. Besides, the attention-based models achieve outstanding
performance in both sequential recommendation and CDSR, which
demonstrates the capability of the attention mechanism in cap-
turing users’ dynamic preferences. In contrast, the GNN-based
methods do not achieve better performance than the attention-
based methods, probably because the graph structure constructed
on such sparse datasets is also sparse and the message propaga-
tion between nodes becomes ineffective. Furthermore, among the
three datasets, the “Movie” dataset obtains the most significant
improvement, which may be due to the fact that it is more tightly
related to the other domains, i.e., a user’s interaction sequences in
the “Book” and “CD” domains are more likely to influence his/her
next interaction in the “Movie” domain. Another reason is that the
“Movie” dataset has the fewest items records (as is shown in Table 1),
for which knowledge transfer from another domain is likely to be
more helpful.

4.6 Performance Analysis w.r.t. Sparsity (RQ2)
In this subsection, we conduct two experiments to verify the ef-
fectiveness of introducing cross-domain information to alleviate
the data sparsity problem. (1) We divide users into groups based
on their behavior sequence length in the target domain, and iden-
tify the reasons of improvement by comparing the performance of
SASRec and MGCL in different user groups. (2) We divide the users
into groups based on their behavior sequence length in the source
domain while fixing the target-domain sequence length interval,
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Figure 3: Performance of SASRec and our MGCL w.r.t. differ-
ent sequence lengths in the target domain.
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Figure 4: Performance of SASRec and our MGCL w.r.t. differ-
ent sequence lengths in the source domain.

and study how the source-domain sequence length affects the rec-
ommendation performance. Notice that due to space limitation, we
only report the performance on HR@10, and the variation tendency
on NDCG@10 is similar.

4.6.1 Performance w.r.t. Target-Domain Sequence Length. Accord-
ing to the users’ sequence lengths in the target domain, we divide
them into five user groups. Fig. 3 depicts the size of each user group
and the corresponding HR@10 performance on the three datasets.
It can be observed that the interaction data of most users is sparse
in the target domain. The group with the shortest sequence length
contains the most users in all the datasets, and the size decreases
as the sequence length becomes longer.

Moreover, the maximum improvement of our MGCL against
SASRec occurs in the short-sequence interval, ranging from 13.60%
to 19.34% on all the datasets. The reason is that the shorter users’
sequence lengths indicate that their interaction data is sparser,
in which case the traditional single-domain method (i.e., SASRec)
struggles to capture users’ preferences. In contrast, the introduc-
tion of the rich source-domain data can enhance learning users’
preferences, and the knowledge transfer across domains are more
effective in this situation. It demonstrates that our MGCL is effec-
tive in alleviating the data sparsity problem. Furthermore, we also
observe that our MGCL achieves better performance than SASRec
on most user groups, which confirms the superiority of our MGCL
in sequential recommendation.

4.6.2 Performance w.r.t. Source-Domain Sequence Length. To in-
vestigate the effect of the source-domain sequence length on per-
formance, we select the interval with the shortest target-domain
sequences (i.e., the sparsest data) and then divide the users into
groups based on their sequence lengths in the source domain.

As is shown in Fig. 4, similar to the target domain, user group
with the shortest source-domain sequences contains the most users
in all the datasets, and the sizes decrease as the sequences become
longer. Moreover, we can find that the recommendation perfor-
mance in the target domain generally improves as the sequence
length in the source domain increases. This is reasonable since our
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Table 2: Recommendation performance of our MGCL and the baselines on three datasets.

Method
Movie CD Book

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10
BPRMF 0.0597 0.1256 0.0492 0.1142 0.0465 0.1088
CoNet 0.0675 0.1489 0.0756 0.1484 0.0764 0.1819
FPMC 0.0723 0.1697 0.0819 0.1785 0.0695 0.1416

GRU4Rec 0.1017 0.1984 0.1210 0.2247 0.1066 0.2162
GRU4Rec+ 0.1133 0.2157 0.1440 0.2536 0.1293 0.2407

Caser 0.1231 0.2243 0.1267 0.2473 0.1163 0.2274
GCSAN 0.1576 0.2889 0.1783 0.3206 0.1291 0.2409
SASRec 0.1740 0.3126 0.1965 0.3539 0.1402 0.2597
CL4SRec 0.1821 0.3179 0.1936 0.3350 0.1409 0.2556
CoSeRec 0.1842 0.3214 0.1968 0.3409 0.1428 0.2631
SASRec-M 0.0961 0.1970 0.0965 0.1921 0.0812 0.1666
𝜋-Net 0.1113 0.2080 0.1265 0.2335 0.1042 0.2101

DA-GCN 0.1736 0.3124 0.1897 0.3458 0.1283 0.2375
CD-SASRec 0.1787 0.3159 0.1995 0.3610 0.1438 0.2677

MGCL 0.2092 0.3693 0.2156 0.3797 0.1542 0.2842

model can identify more users’ preference characteristics in the
source domain with more interaction data, which are then trans-
ferred to the target domain.

4.7 Ablation Study (RQ3)
We conduct an ablation study to evaluate the contribution of dif-
ferent components of our MGCL, and the results are presented in
Table 3. Specifically, we separate out the important components of
our MGCL and recompose them. We denotes ‘SeqEnc’ as the se-
quence encoder (i.e., SASRec). ‘U’ and ‘G’ represents user sequence
graph embedding learning and global graph embedding learning,
respectively. ‘S’ represents the introduction of the source-domain
data, capturing the users’ preferences in the source domain and
aggregating them with the target-domain preferences for predic-
tion. ‘GCL’ and ‘PCL’ denotes the intra-domain graph contrastive
learning and the inter-domain preference contrastive learning, re-
spectively. ‘Projection’ represents a nonlinear projection on the
output of each graph encoder layer. From Table 3, we have the
following observations:

• Simply attaching a graph encoder (denoted as ‘U’ or ‘G’) to a se-
quence encoder to learn the item representations cannot achieve
better results, even though both graph encoders are employed.
The reason is that on such sparse datasets, the graph structure
constructed only by users’ sequences from a single domain is
still very sparse and the message propagation between nodes
cannot be performed well.

• Aggregating the users’ preferences from different domains (de-
noted as ‘S’) significantly improves the recommendation perfor-
mance, which demonstrates that the introduction of the source-
domain data and the knowledge transfer across domains enable
the model to adequately capture the users’ preferences and effec-
tively alleviate the sparsity problem.

• Ourmodel typically benefits from intra-domain graph contrastive
learning (denoted as ‘GCL’). It indicates that jointly learning

static collaborative information and dynamic sequential informa-
tion through the contrastive learning mechanism and extracting
the self-supervised signal is helpful to improve the recommenda-
tion performance.Moreover, the performance is further improved
by adding a nonlinear projection (denoted as ‘Projection’), which
reflects the importance of the projection layer in alleviating loss
of information caused by contrastive learning.

• Inter-domain preference contrastive learning (denoted as ‘PCL’)
can significantly improve the model performance. It demon-
strates the importance of capturing the complementary infor-
mation of users’ preferences in the target and source domains
through the contrastive learning mechanism and performing
knowledge transfer between different domains. Moreover, we
can observe that all the best results are from the composition of
all the modules, which confirms their complementarity.

4.8 Influence of Hyper-parameters (RQ4)
In this subsection, we explore the influence of three hyper-
parameters (i.e., the weight of target-domain item representation
contrastive learning 𝛼 , the weight of source-domain item repre-
sentation contrastive learning 𝛽 and the weight of user preference
contrastive learning 𝛾 ) on the model performance. We vary the
value of the hyper-parameters in the range of {0, 0.25, 0.5, 0.75, 1}
and report the results in Fig. 5.

These three hyper-parameters control the intensity of the corre-
sponding self-supervised tasks. From Fig. 5, we can observe that the
recommendation performance improves when the parameter value
is increased from 0 to some larger values on all datasets, which
demonstrates the effectiveness of the three contrastive learning
tasks. Moreover, the best results are achieved in most cases when
the parameter value is 0.5, but the performance gradually decreases
as the parameter value further increases to 1. This indicates that
an excessive focus on the contrastive learning task may hurt the
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Table 3: Recommendation performance in ablation studies of our MGCL with different architectures.

Architecture Book → Movie Book→ CD Movie→ Book

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10
SeqEnc 0.1740 0.3126 0.1965 0.3539 0.1402 0.2597
SeqEnc + U 0.1692 0.2977 0.1881 0.3414 0.1333 0.2441
SeqEnc + G 0.1755 0.3146 0.1941 0.3481 0.1348 0.2540
SeqEnc + U + G 0.1738 0.3095 0.2005 0.3545 0.1349 0.2552
SeqEnc + U + G + S 0.1926 0.3381 0.2034 0.3598 0.1473 0.2701
SeqEnc + U + G + S + GCL 0.1933 0.3427 0.1995 0.3581 0.1487 0.2727
SeqEnc + U + G + S + GCL + Projection 0.1998 0.3574 0.2070 0.3687 0.1496 0.2748
SeqEnc + U + G + S + PCL 0.2029 0.3588 0.2095 0.3704 0.1488 0.2743
SeqEnc + U + G + S + GCL + Projection + PCL 0.2092 0.3693 0.2156 0.3797 0.1542 0.2842
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Figure 5: Performance of our MGCL with the weights of
different contrastive losses.

recommendation performance, since the supervised signal should
assist but not dominate the training process.

4.9 Quality of Item Representations (RQ5)
In this subsection, we explore the help of the contrastive learning
mechanism used in our MGCL for learning item representations.
We project the item embeddings of the trained model into 2D by
singular value decomposition (SVD) and visualize the results. The
item embedding distributions of SASRec, CL4Srec, CoSeRec and
our MGCL on the Movie and CD datasets are shown in Fig. 6 and
Fig. 7, respectively. Notice that the shades of color represent the
frequency of the item’s occurrence.

It can be observed that the distribution of the item embeddings
learned by SASRec is in a narrow range and the high frequency
items tend to be distributed on the same side. This indicates that
the models lack the ability to distinguish different items and can-
not model the features of diverse items well [5, 33]. CL4SRec and
CoSeRec learn better embedding distributions than SASRec because
they introduce some contrastive tasks to assist the learning of item
embeddings which maximizes the difference of negative pairs. How-
ever, both models are limited by the data of a single domain and
cannot learn a broader embedding distribution. It is clear that our
MGCL effectively expands the embedding space, and both high and
low frequency items can be uniformly distributed among it. We
believe that this is because with feature-level contrastive learning
across domains, the model is able to obtain more effective infor-
mation to distinguish different items, and has more capabilities to
model diverse features.

(a) SASRec (b) CL4SRec (c) CoSeRec (d) MGCL

Figure 6: Item embeddings on the Movie dataset.

(a) SASRec (b) CL4SRec (c) CoSeRec (d) MGCL

Figure 7: Item embeddings on the CD dataset.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a generic framework named multi-view
graph contrastive learning (MGCL) for cross-domain sequential
recommendation. Specifically, we tackle the problem from the per-
spective of an intra-domain item representation view and an inter-
domain user preference view. We adopt the item representation
contrastive learning to achieve the complementation of the se-
quential information and the collaborative information. Moreover,
we employ preference contrastive learning to enable knowledge
transfer of users’ preferences from different domains. Extensive em-
pirical studies on three real-world datasets indicate that our MGCL
significantly outperforms thirteen competitive baselines. For future
works, we aim to apply our MGCL to scenes of cross-domain or
cross-organization privacy-aware federated recommendation [18],
which can reduce the risk of privacy leakage due to the introduction
of rich source-domain data.
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